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ABSTRACT

Due to their capacity to self-renew, proliferate and generate multi-lineage cells, adult-derived stem
cells offer great potential for use in regenerative therapies to stop and/or reverse degenerative dis-
eases such as diabetes, heart failure, Alzheimer’s disease and others. However, these subsets of
cells can be isolated from different niches, each with differing potential for therapeutic applica-
tions. The stromal vascular fraction (SVF), a stem cell enriched and adipose-derived cell population,
has garnered interest as a therapeutic in regenerative medicine due to its ability to secrete para-
crine factors that accelerate endogenous repair, ease of accessibility and lack of identified major
adverse effects. Thus, one can easily understand the rush to employ adipose-derived SVF to treat
human disease. Perhaps faster than any other cell preparation, SVF is making its way to clinics
worldwide, while critical preclinical research needed to establish SVF safety, efficacy and optimal,
standardized clinical procedures are underway. Here, we will provide an overview of the current
knowledge driving this phenomenon, its regulatory issues and existing studies, and propose poten-
tial unmapped applications. STEM CELLS TRANSLATIONAL MEDICINE 2017;6:1096–1108

SIGNIFICANCE STATEMENT

Stromal vascular fraction (SVF) isolated from the adipose tissue has been used worldwide while
research studies are underway. This scenario often generates conflicting rationales for treat-
ments, confusing terms and general assumptions. Our contribution here is expected to advance
the knowledge of scientists and clinicians about, specifically with respect to its composition,
nomenclature and necessary studies. By doing so, we expect not only to clarify and extend the
therapeutic potential of the SVF, but also present best practices and standards from other basic
research fields that together will help accelerate the translation of future SVF research into
patient care.

INTRODUCTION

More often than not, science reminds us that the
discovery of therapeutic agents and drugs does
not always follow a conventional, hypothesis
driven path. In 1928, a future Nobel Prize laureate
named Alexander Fleming returned from a two-
week vacation to find mold on an accidentally
contaminated, neglected Staphylococcus culture
plate. Upon examination of the mold, he noticed
that it unexpectedly prevented the growth of
Staphylococci. Penicillin, the first naturally occur-
ring antibiotic drug used therapeutically, had just
been accidentally discovered [1]. More recently, a
cGMP-specific phosphodiesterase type 5 inhibitor
developed for the treatment of hypertension
exhibited minimal therapeutic effect remedying
angina pectoris (its original purpose). However,

patients treated with this compound were return-
ing for additional doses. This sought-after com-

pound was Sildenafil, now known as Viagra, the

first oral treatment approved to treat erectile dys-

function in the U.S. [2]. Similarly, recent evidence

involving the therapeutic properties of stem cells,

in particular those derived from adult tissues like

bone marrow and adipose, may well place such

cells in this selective group of discoveries that

achieved unintended success outside their original

purpose. Once prized for their differentiation

capacity, adult-derived stem cells have consis-

tently shown therapeutic properties that surpass

their original realm of engraftment and replace-

ment paradigms [3–5].
In this review, we will focus on stromal vascu-

lar fraction (SVF), a collection of nonexpanded,
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heterogeneous cells derived from enzymatically digested adipose
tissue and sometimes referred to as adipose-derived stem cells.
Though not fully defined, SVF preparations are thought to encom-
pass unknown numbers of stem cells; hematopoietic, adipose and
endothelial progenitors; as well as immune cells, fibroblasts, peri-
cytes, endothelial cells and other uncharacterized cells [6, 7]. In
particular, SVF enriches for a particular population of stem cells, a
subtype of mesenchymal stem cells (MSCs), which has gained
much attention over the past decade for their therapeutic proper-
ties [4]. Due to its easy isolation, lack of ethical concerns and ther-
apeutic potential, SVF has been rapidly gaining global attention.
Basic research and clinical studies establishing safety, cell composi-
tion and efficacy are currently being undertaken. Such studies will
help eradicate conflicting rationales for treatments, confusing
terms and general assumptions. In this review, we will discuss
nomenclature and regulatory issues, current applications and
mechanisms of action, critical gaps in knowledge and potential
unexploited clinical applications related to the use of SVF.

THE ORIGINAL ADIPOSE-DERIVED STEM CELLS

The isolation of stem cells from adipose tissue was originally
described by Zuk and colleagues, who successfully isolated and
cultured cells from human liposuction aspirates, ultimately nam-
ing them processed lipoaspirate or PLA cells. These adipose-
derived cells shared the same characteristics of MSCs previously
isolated from the bone marrow, exhibiting plastic adherence,
fibroblast-like morphology, self-renewal, and capacity for multipo-
tential differentiation [8–10]. Zuk suggested human PLA cells were
perhaps a clonal variant of the MSC population located within the
adipose compartment. Therefore, these multipotent adipose-
derived cells could be used as an alternate therapeutic cell to
MSCs, which, at that time, had been almost exclusively isolated
from bone marrow aspirates [11]. Today we know that MSCs can
be isolated from virtually any adult tissue with a stromal compo-
nent [12], including umbilical cord and umbilical blood, placenta,
fetal liver, muscle, lung, and gingival tissue [4, 13, 14]. In these
niches, MSCs are thought to serve as progenitors for the skeletal
tissue (bone, cartilage, and fat) [8], perivascular cells (although it
has been shown that not all MSC can exert this function) [15, 16]
and connective tissue cells [17]. But, its greatest impact has been
witnessed outside the stromal niche, where expanded, infused
MSCs have been consistently improving diseases in preclinical
models of myocardial infarction, diabetes, wound healing, trau-
matic brain injury, sepsis, cancer, and other diseases through
mechanisms not fully understood [18–30].

Not surprisingly due to its abundant availability, cells derived
from adipose tissues are being heavily considered and used as a
source of MSCs. According to the American Society for Aesthetic
Plastic Surgery, close to 400,000 liposuction surgeries are per-
formed per year, each one yielding 100 ml to >3 liters of lipoaspi-
rate tissue [31]. More importantly, one can conveniently enrich
for MSCs contained within the adipose tissue by virtue of enzy-
matic digestion, centrifugation and plastic adherence [32]. Follow-
ing its first description in the literature, adipose-derived MSCs
have been isolated by groups worldwide and have been titled
adipose-derived stem/stromal cells (ASCs), adipose-derived adult
stem cells, adipose-derived adult stromal cells, adipose-derived
stromal cells, ASCs or adipose mesenchymal stem cells, lending
confusion to the field [32]. In an effort to solve this issue, the

International Federation for Adipose Therapeutics and Science
(IFATS) reached a consensus and adopted the term “adipose-
derived stem cells” (ASCs) to identify the isolated, plastic-
adherent, multipotent, MSC-like cell population [32]. Therefore,
following INFATS consensus, we will use the term ASCs when
referring to MSCs isolated from the adipose tissue. Moreover, in a
joint statement with the International Society for Cellular Therapy
(ISCT), IFATS has also established minimal criteria and guidelines
for the identification of SVF-derived ASC.Within the SVF, ASCs can
be phenotypically identified as CD452CD235a2CD312CD341.
Cultured ASC can be identified, similarly to MSCs [33], as
CD131CD731CD901CD1051CD312CD452CD235a2, plastic
adherent cells with tri-lineage differentiation potential. Phenotypi-
cally, however, ASCs differ from bone-marrow-derived MSCs in
their positivity for CD36 and negativity for CD106 [6]. Interestingly,
CD34 expression is found in the majority of SVF cells (up to 80%)
[34], and two days after initial SVF plating, more than 95% of
adherent ASCs express CD34 [35]. But, like observed in MSCs [36],
its expression in ASCs is thought to be lost during in vitro expan-
sion [37], indicating culture conditions affects affect the physiolog-
ical phenotype of MSCs and ASCs. Differences between CD341

and CD342 populations and the importance of CD34 expression
for the functionality of SVF and ASCs are extensively discussed
elsewhere [34, 37, 38].

THE SVF: RISE AND RISK

The standardization and utilization of SVF in research and clinical
settings has been problematic. Numerous available systems using
either enzymatic or nonenzymatic adipose tissue-derived cell iso-
lation have become commercially available (reviewed here [39]).
Yet, despite its proven heterogeneous cell composition and lack of
pre-clinical studies addressing safety and efficacy, enriched SVF
has been collectively named stem cells and indiscriminately used
in so called “stem cell clinics” around the U.S. The principal ration-
ale behind the clinical use of SVF preparations relies on the exis-
tence of MSCs. However, it is known that SVF contains a
diminutive percentage of MSCs, estimated at 2%–10% of the SVF
[40]. Thus, clinical trials employing MSCs, regardless of tissue
source, require their isolation and further in vitro expansion, as
opposed to the use of freshly isolated SVF used in many clinics. In
addition, the non-MSC component of the SVF contains popula-
tions of adipose, endothelial and hematopoietic stem/progenitor
cells that have yet to be characterized. These cell types are func-
tionally distinct from MSCs, but may share common markers such
as CD34, which could encompass 63% of SVF cells, the majority of
which are not MSCs [34]. These factors advance misperceptions
surrounding composition of the SVF and further confound the
field and the general public.

Although the use of autologous cells at the point-of-care
(treatment occurs in the same surgical procedure) minimizes
potential risks associated with SVF transplants, a series of intrinsic
and extrinsic risk factors still ought to be considered. The presence
of a heterogeneous population of cells with intrinsic progenitor
potential immediately raises concerns about neoplasm and
unwanted tissue differentiation. Tissue mass growth following
transplantation of autologous stem cell from blood [41, 42] and
olfactory mucosa [43] has been reported in patients. A recent sys-
tematic review of the available literature indicated the existence
of a significant cancer-promoting property of ASC [44], although
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no distinction between ASCs and SVF was made. Specifically for
SVF, it has been shown that coinjection of noncultured, human
CD341 cells purified from lipotransfer procedures and breast can-
cer cells increased tumor growth in immunodeficient mice, and
such growth was not due to the generation of adipocytes [45]. A
recent study has shown that SVF injected intradiscally in a goat
model of intervertebral disc regeneration caused severe inflam-
mation characterized by lymphocytic infiltration, neovasculariza-
tion, and endplate destruction [46], although the authors could
not define the underlying destructive mechanism.

Extrinsic risk factors to autologous, nonmanipulated SVF prep-
arations can potentially arise from cell handling (compromised
sterility and variable cell yield), as well as dose and mode of
administration. Sample contamination and cell yield may heavily
depend on the isolation method used (e.g., closed versus open
system, mechanic versus enzymatic isolation—reviewed here
[47]). Unfortunately, there is insufficient data to establish a reli-
able dose versus effect relationship. Therefore, high dose of cells
may be needed for therapy, increasing the risk of unwanted
effects. Finally, concentrated cells may form aggregates and lead
to pulmonary emboli or infarctions following administration [48],
especially when intravenously infused, as demonstrated in hema-
topoietic stem cell (HSC) transplants [49]. A recent study showed
no serious side effects, systemic infection or cancer was associ-
ated with SVF cell therapy in a total of 1114 patients who received
SVF for the treatment of osteoarthritis [50], indicating a safe pro-
file of SVF, at least following intra-articular injections for the treat-
ment of joints. Additional studies will further address SVF risks
and address important questions like postdelivery survival of cells,
rejection and functional properties of the cells.

REGULATORY ISSUES

In the U.S., the unregulated use of SVF in private clinics led to the
intervention of the U.S. governing body responsible for supervis-
ing and regulating cell therapy, the Food and Drug Administration
(FDA). The FDA currently defines SVF as a drug, device, and/or bio-
logic product based on multiple criteria. First, the use of adipose-
derived tissue for nonadipose related conditions is considered
nonhomologous, meaning the “stem cells” do not perform the
basic function or functions in the recipient as in the donor [51].
According to Code of Federal Regulations (CFR) Title 21 estab-
lished by FDA, adipose tissue is classified as structural tissue that
is intended to cushion and support other tissues.When the SVF is
reintroduced into the body for purposes other than this intended
use, this nonhomologous use must follow a 351 drug regulatory
pathway. Second, the manufacturing steps required to produce
SVF involves the use of collagenase enzymatic digestion, which
classifies SVF as more than “minimally manipulated cells” accord-
ing to the 21 CFR 1271.10(a) (1) criterion of minimal manipulation.
During the digestion process, the structural components from the
adipose tissue are removed, resulting in a manipulated product.
There again, use of SVF falls outside of its natural biologic function
and should comply with the FDA 351 drug regulatory pathway.

Exemption from the drug pathway occurs when the harvesting
of the adipose tissue is processed during the “same surgical
procedure.” Point-of-care centrifuge machines that process adi-
pose tissue for the production of SVF intended to be used for spe-
cific clinical applications must follow a 361 device regulatory
pathway, which is regulated by guidelines posted in the 21 CFR

part 1271. Depending on the initial regulatory pathway, a biologics
license (drug) from the FDA or premarket approval (device) could
be required prior to commercialization.

In Japan, “The Act on the Safety of Regenerative Medicine”
which regulates medical professionals’ practices and clinical stud-
ies related to regenerative medicine classifies SVF as a low risk or
medium risk depending upon the level of risk associated with the
medical treatment. Regardless of risk category, the regenerative
medicine plan which should include using SVF must be submitted
to the Ministry of Health, Labour and Welfare (MHLW). Addition-
ally, any healthcare organization that wishes to offer regenerative
medicine treatments must request opinions from a certified spe-
cial committee or a certified committee on regenerative medicine
about their plan before they can submit the plan to the MHLW.
The most important step after the MHLW approval is to self-
report adverse events and other specific plan details to the com-
mittees and MHLW [52].

In Europe, MSCs are classified as advanced therapy medicine
products (ATMPs) guided through the European Medicines
Agency (EMA). According to Directive 2004/23/EC and 1394/2007,
in procedures in which SVF is autologous, cell administration is
conducted in the same surgical procedure, and the essential func-
tion of cells is considered to be the same as in the donor’s fat tis-
sue, the cellular therapy treatment is not considered an ATMP.
However, SVF can be classified as ATMPs by the EMA in nonho-
mologous applications, such as repair of injured tissues in case of
nonhealing wounds and scarred tissue or in cases in which the
SVF is combined with other products or cell types like MSCs. Addi-
tionally, the final product does not need to be placed on the mar-
ket in the Member States as long as the cells are not being
commercialized or sold to outside parties (http://www.ema.
europa.eu/ema).

In Australia, legislative framework for the regulation of human
cell and tissue products by the “Therapeutic Good Administration”
(TGA) allows products that are derived from human tissue and
cells during medical procedures that are considered a part of med-
ical practice to be excluded from regulation provided they are col-
lected from a patient who is under the clinical care and treatment
of a licensed medical provider and manufactured by that medical
provider for the therapeutic application in the treatment of a sin-
gle indication and in a single course of treatment of that patient
by the same medical provider, or by a person or persons under
the professional supervision of the same medical provider. Thus,
SVF is exempt from regulation in Australia based on the criteria
discussed previously (https://www.tga.gov.au).

In comparison, the U.S. holds the most stringent regulations
for SVF. Regardless of the regulatory direction in which SVF can be
clinically used (351 drug regulatory pathway or the 361 device reg-
ulatory pathway), the final SVF product combines different cell
types, which raises new clinical safety concerns as discussed
above. Therefore, before SVF is clinically or commercially available,
a series of stringent preclinical studies needs to be addressed,
including cell characterization, manufacturing validation, safety
studies and proof of pharmacological activity. These and other
considerations have been comprehensively reviewed elsewhere
[53]. Lack of such studies raises serious ethical considerations on
the use of stem cell-based therapies as emphasized by Niemans-
burg [54] and Vonk and respectively colleagues [55]. A risk-benefit
ratio becomes difficult to predict since the final SVF product is not
well described, negative results are often unpublished and there
is no defined mechanism of action to define endpoint
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Table 1. List of clinical trials utilizing SVF currently listed at http://clinicaltrials.gov

Disease/

condition

Study status

(Number of enrolled patients)

Therapeutic injection

composition/

combination Outcome/adverse effects

Referencea

(Country andregulation)

Alopecia Recruiting (8) SVF injection into a 2 3 2
cm area

Ongoing NCT02626780
(United States: FDA)

Osteoarthritis Complete (6)
phase 1

SVF injected directly into
the intra-articular space
with a mean of 12 3 106

viable nucleated SVF
cells per knee

Improvement in WOMAC
and VAS scores. No
adverse effects.

NCT02357485
(United States: IRB)

Complete (6)
phase 1

SVF with a mean of 48 mil-
lion nucleated SVF cells
and a mean viability of
78%

Decreased pain and
increased motility 12 wk
post-op. No adverse
effects

NCT02276833
(United States: IRB)

Recruiting (100)
phase 1/2

Intra-articular administra-
tion of SVF and PRP

Ongoing NCT01739504
(United States: IRB)

Complete (30)
phase 1/2

10–50 106 SVF cells and
5–10 ml PRP

No results posted NCT02142842
(Vietnam)

Recruiting (39) High and low Dose with
Placebo control

Ongoing NCT02726945
(United States: FDA)

Recruiting (30) Direct injection of SVF and
activated platelets

Ongoing NCT01947348
(United States:

IRB)
Recruiting (20) Intra-articular injection of

SVF
Ongoing NCT02697682

(Denmark)
Breast cancer-related

lymphedema
Recruiting (10)

phase 2
Freshly isolated SVF in a

cell-assisted lipotransfer
to the affected axillary
region

Ongoing NCT02592213
(Denmark)

Pressure ulcers Recruiting (12)
phase 1

5.0 3 106 ASCs per cm3 of
wound area

Ongoing NCT02375802
(United States:
FDA)

Crohn’s disease Recruiting (10)
phase 1/2

SVF microinjected around
fistulas

Ongoing NCT02520843
(France)

Erectile dysfunction Recruiting (100)
phase 1/2

Laboratory isolated SVF and
PRP from peripheral
blood

Ongoing NCT02087397
(United States: IRB)

Diabetes mellitus type II Recruiting (100)
phase 1/2

Intravenous infusion of adi-
pose derived SVF

Ongoing NCT01453751
(United States: IRB)

Multiple sclerosis Recruiting (50)
phase 1/2

Intravenous infusion of adi-
pose derived SVF

Ongoing NCT01453764
(United States: IRB)

COPD Recruiting (100) Intravenous injection Ongoing NCT02041000
(United States: IRB)

Recruiting (20)
phase 1/2

Intravenous transfusion
mixed with PRP

Ongoing NCT02645305
(Vietnam)

Recruiting (60)
phase 1

Intravenous injection of
SVF cells in saline
solution

Ongoing NCT02161744
(United States: IRB)

Recruiting (100)
phase 1/2

Intravenous infusion and
inhalation delivery

Ongoing NCT01559051
(United States: IRB)

Degenerative disc disease Recruiting (100) ASCs in combination with
PRP

Ongoing NCT02097862
(United States: IRB)

High tibial osteotomy Recruiting (52) 3cc transplantation Ongoing NCT02642848
(Korea)

Micromastia Recruiting (20)
phase 2

SVF and autologous
adipose

Ongoing NCT02116933
(United States: IRB)

Adipose graft Complete (20)
phase 2

SVF and autologous
adipose

No conclusions. No adverse
effects

NCT01771913
(Brazil)

Recruiting (30)
phase 1/2

SVF and autologous
adipose

Ongoing NCT02076022
(United States: FDA)

Facial adipose graft Recruiting (34)
phase 2

SVF and autologous
adipose

Ongoing NCT02526576
(United States: FDA)

Complete (6)
phase 1

SVF and autologous
adipose

No outcomes listed NCT01828723
(United States: FDA and IRB)

Skin graft Recruiting (75)
phase 1/2

1 3 106 SVF transplanted
per square centimeter

Ongoing NCT02546882
(China)

Systemic sclerosis Completed (12) SVF injection into fingers Improvement in hand
disability No adverse
effects.

NCT01813279
(France)

Recruiting (40)
phase 2

1 ml SVF Ongoing NCT02558543
(France)

(continued)
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measurements apart from clinical outcome. And for many condi-
tions, the existence of an alternative, approved treatment hinders
the availability of control groups in double-blinded randomized
controlled trial.

CURRENT CLINICAL STUDIES

A search on http://clinicaltrials.gov was performed (Search terms:
Stromal vascular fraction, Adipose derived stromal cells, Adipose
derived regenerative cells, Adipose derived stromal vascular frac-
tion and Adipose derived stem cells). Studies with unknown status
and MSCs only were excluded (Table 1). Studies within the U/S.
are regulated by either the Institutional Review Board (IRB) or the
FDA. FDA-approved studies in the U.S. indicate the presence of an
investigational new drug or an investigational device exemption.
Regulatory agencies in Korea and China are also named IRB and
FDA, respectively. Regulatory agencies in other countries include:
The Scientific and Ethic Board (Vietnam), The Regional Scientific
Ethical Committees for Southern Denmark (Denmark), Agence
Nationale de S�ecurit�e du M�edicament et des produits de sant�e
(France), the National Committee of Ethics in Research (Brazil)
and Health Canada (Canada).”

THERAPEUTIC POTENTIAL OF SVF

In general, SVF is thought to regenerate tissue through a variety
of mechanisms. SVF has been shown to promote angiogenesis,
partially through secretion of various growth factors such as vas-
cular endothelial growth factor (VEGF) [56], the presence of endo-
thelial progenitor cells (EPCs) [57] and the supportive role of ASC
with pericytic properties [35]. Interestingly, using SVF embedded
in Matrigel, Koh and colleagues have shown that SVF promotes
neovascularization not through angiogenesis, but instead through
reassembly of its endothelial cells into pre-existing vasculature.
Moreover, this effect was dependent on the presence of macro-
phages [58], suggesting the presence of different cell types in the

SVF might be beneficial. SVF was also shown to display anti-
inflammatory effects in models of ischemic heart failure [59] and
experimental autoimmune encephalomyelitis [60], although the
mechanism(s) through which SVF can inhibit inflammation, apart
from having an ASC population, remains speculative. Curiously,
Blaber and colleagues, through in vitro cytokine analysis, have
shown that SVF preparations secreted higher levels of IL-1b, IL-8,
and IL-15, and lower levels of the anti-inflammatory cytokines IL-
10 and IL-13 when compared to ASCs, suggesting SVF may possess
distinct immunomodulatory properties. Finally, in vivo differentia-
tion of SVF has been limited to fat graft retention studies, in which
some SVF cells differentiated into adipocytes [61]. Furthermore,
due to its heterogeneous composition of cells and still unknown
effects from cross-talk between the different cells in SVF and
between SVF and host tissue, defining the therapeutic properties
of the SVF will be challenging. However, one can attempt to define
its real therapeutic potential by separately assessing the potential
of each cell component that has been identified within the SVF to
date.

Mesenchymal Stem Cells

As the most studied and characterized cell from the SVF, MSCs
first appeared in the annals of science in the 1860s thanks to the
German pathologist Julius Cohnheim. Cohnheim and colleagues
demonstrated the existence of nonhematopoietic, plastic adher-
ent, fibroblast-like cells from the bone marrow, proposing that
these cells were involved in the wound healing process [62]. In
1869, Goujon observed that bone marrow from rabbits and chick-
ens could create ossification sites when transplanted into muscle
[63]. It was not until the 1960s and 1970s that scientists revisited
the subject. First, Tavassoli and Crosby demonstrated that frag-
ments of bone marrow deprived of bone contained cells with
osteogenic potential [64], and Friedenstein and colleagues con-
firmed the existence of such cells in a minor subpopulation of the
bone marrow and coined the term colony-forming unit fibroblastic
or CFU-Fs, identifying the cells based on their ability to form colo-
nies derived from single cells [65]. In 1991, the bone marrow-

Table 1. continued

Disease/

condition

Study status

(Number of enrolled patients)

Therapeutic injection

composition/

combination Outcome/adverse effects

Referencea

(Country andregulation)

Critical limb ischemia Recruiting (20) SVF injected
intramuscularly-30cc of
SVF

Ongoing NCT02234778
(United States: FDA)

Peripheral artery disease Recruiting (10)
phase 1

200 3 106 cells split into
thirds. 1/3 intravenous
injection, 1/3 intra-
adventitia, 1/3 intra-
muscular

Ongoing NCT02756884
(United States: FDA)

Refractory rheumatoid
arthritis, systemic lupus
erythematosus or Sharp’s
syndrome

Recruiting (20)
phase 1

Intravenous injection of
SVF

Ongoing NCT02741362
(United States: IRB)

Soft tissue defects/Abnor-
mal healing wounds

Recruiting (10)
phase 1

Subcutaneous injection
with or without unpro-
cessed autologous
adipose

Ongoing NCT02590042
(Canada)

aclinicaltrials.gov ID number of actively recruiting or completed interventional studies involving stromal vascular fraction or adipose derived stromal
cells clearly specified as being the same as the heterogeneous, nonexpanded fractioned SVF.
Abbreviations: ASC, adipose-derived stem/stromal cells; COPD, Chronic Obstructive Pulmonary Disease; FDA, Food and Drug Administration; IRB,
Institutional Review Board; SVF, stromal vascular fraction; PRP, Platelet-Rich Plasma.
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derived MSC (BM-MSC) differentiation paradigm was further
expanded when Caplan and colleagues were able to differentiate
these cells into osteoblasts, chondrocytes and adipocytes [8].
Based on this rather limited differentiation potential, CFU-Fs were
named MSCs, still the most prevalent name when referring to
these cells and the rationale behind the first studies involving
MSCs.

Early studies involving BM-MSCs clearly indicated disease
amelioration in models of bone repair, spinal cord injury, myocar-
dial infarct, and diabetes. Despite significant failure to engraft and
differentiate, these studies suggested BM-MSCs could improve
disease outcome outside the therapeutic paradigm of tissue
replacement [21, 22, 66–68]. The existence of another therapeutic
paradigm in the BM-MSC field was confirmed by LeBlanc and col-
leagues, who cotransplanted in vitro-expanded BM-MSCs during a
bone marrow transplant, based on the work of Frassoni et al. [69]
and her own preclinical studies demonstrating that BM-MSC could
inhibit lymphocyte activation in culture [70]. The addition of BM-
MSCs significantly inhibited the development of graft versus host
disease following transplantation [26], consolidating the concept
of immunomodulation by BM-MSCs. Further studies have
revealed that BM-MSC infusions, even allogeneic in nature, do
not elicit immune responses in part because of a lack of immune
costimulatory molecules and low expression of MHC class II [71].
Once infused, BM-MSCs have been shown to interact and modu-
late immune cells, skewing their activation and phenotype away
from an inflammatory response (recently reviewed elsewhere
[72]).

As aforementioned, MSCs can be isolated from virtually any
adult tissue, based on the criteria established by the ISCT. It is
now appreciated that the plasticity associated with MSCs lies
within their capacity to sense and discretely respond to the envi-
ronment, most likely exerting their therapeutic effects through
secretion of paracrine cytokines and growth factors that modulate
immune responses and endogenous repair (Table 2). More
recently, BM-MSC-derived microvesicles have also been proposed
to have therapeutic benefit [73–75]. Such treatment potential
explains why MSCs are the subject of over 600 clinical trials at the
time of this review according to http://clinicaltrials.gov, targeting
a wide array of diseases.

It has not yet been fully elucidated whether or not ASCs and
MSCs from different sources share the same therapeutic poten-
tial. Comparison between MSCs and ASCs remains a topic of
intense debate [90]. Studies have shown that, apart from selected
surface markers and trilineage differentiation, ASCs, like their
counterpart MSCs, share a strong immunosuppressive capability

[91], partially through secretion of exosomes [92], anti-apoptotic
[93] and anti-scarring effects [94], as well as their ability to secrete
trophic factors like VEGF, HGF and TGF-beta [56]. However, tran-
scriptome and proteome analysis revealed 13.2% and 18% targets,
respectively, were differentially expressed between MSCs and
ASCs [90], indicating intrinsic differences between these cell types.
Nevertheless, the use of ASCs, like MSCs, has been proposed for
the treatment of a multitude of conditions such as cardiovascular
diseases [95], autoimmune disorders [96], and tissue engineering
[97]. A few studies have compared the therapeutic properties of
MSCs isolated from different tissues. Noel and colleagues’ work
supports the use of MSCs over ASCs for osteogenesis and chon-
drogenesis based on a pre-commitment of MSCs toward such line-
ages [98]. Heo and colleagues did not observe any significant
differences in growth rate, colony-forming efficiency and immuno-
phenotype from ASCs or MSCs derived from bone marrow, pla-
centa, and umbilical cord blood [99]. Interestingly, only bone mar-
row and ASCs significantly inhibited mitogenic T cell proliferation
[99]. In this regard, Keyser and colleagues have shown that murine
ASCs and MSCs isolated from muscle tissue, omentum, and bone
could inhibit mitogenic and allogeneic T cell activation regardless
of tissue of origin. However, this inhibition was most pronounced
for muscle-derived MSCs and ASCs in the mitogen and allogeneic
T cell activation respectively [100]. Last, a recent study comparing
MSCs from bone marrow and ASCs proposed that the latter had
more potent immunomodulatory potential since ASCs displayed
increased Indoleamine 2, 3-dioxygenase activity and Prostaglandin
E2 expression [101]. These differences can be attributed to the
existence of inconsistent protocols for cell isolation, expansion
and freezing. It is known that culture conditions, such as fetal
bovine serum, human supplements, cell seeding density and oxy-
gen conditions, can influence the quality, proliferation, senes-
cence, and immunomodulation ability of the cells (reviewed
elsewhere [102]). Further research is needed for the establish-
ment of rigorous potency assays, quality control and culture
standards.

Endothelial Progenitor Cells

EPCs are required for vasculogenesis during early embryo devel-
opment. In contrast, adult vascular growth develops from fully-
differentiated endothelial cells through angiogenesis [103]. How-
ever, additional findings have shown the existence of postnatal,
circulating EPCs that share phenotypic characteristics with their
embryonic counterpart, proposing an angiogenic role for EPCs
[104, 105]. EPC mobilization and possible engraftment have
indeed been confirmed in postnatal angiogenesis in the presence

Table 2. List of factors implicated in the therapeutic effects of mesenchymal stem cells in experimental models further confirmed by sup-
pression of gene expression or neutralizing antibodies

Factor Experimental model

Prostaglandin E2 (PGE2) Experimental arthritis [76],[77], atopic dermatitis [78], myocardial infarct [79], sepsis [80]
Tumor necrosis factor-inducible gene 6

protein (TSG-6)
Myocardial infarct [27], diabetes [24], corneal injury [81],

peritonitis [19],[82] acute lung injury [20]
Indoleamine 2,3-dioxygenase (IDO) Renal allograft model [83]
Hepatic growth factor (HGF) Acute lung injury [84], Multiple sclerosis [85]
Vascular endothelial growth factor (VEGF) Hyperoxic lung injury [86], Acute kidney injury [87]
Insulin growth factor (IGF) Cisplatin-induced kidney injury [88]
Antimicrobial peptide LL-37 Pneumonia [25]
Transforming growth factor beta (TGF-beta) Atopic dermatitis [78], Brain ischemia [89]
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of coronary artery disease and myocardial infarction [106]. It is
also known that their circulating and wound level numbers are
decreased in diabetes [107]. Hence, numerous clinical trials have
been conducted in patients with heart disease, diabetes, periph-
eral arterial disease, pulmonary disease, and cancer in which puta-
tive EPCs have been examined as a biomarker or used as cell
therapy (http://clinicaltrials.gov). Unfortunately, angiogenic thera-
pies using EPCs have been largely unsuccessful to date. Endoge-
nous EPC recruitment elicited by angiogenic factors like VEGF is
insufficient to cause effectual angiogenesis and the use of alloge-
neic EPCs leads to immune rejection and poor transplantation out-
come [108, 109]. Thus, the use of autologous SVF, with EPCs and
endothelial cells at numbers varying from 7% to 30% [40, 110],
provides a rationale for the use of SVF in the treatment of dis-
eases with a pathogenic vascular component. Due to the poten-
tially large numbers of EPCs that can be isolated from the SVF, it is
possible that the SVF may constitute a superior source when com-
pared to whole blood. But before SVF-derived EPCs are considered
for angiogenic therapies, some challenges need to be overcome.
First, there are no definitive markers for identification of EPCs. Cur-
rent EPC marker combinations include CD311/CD341/CD901

[110], CD311CD341CD452CD901CD105lowCD1461 [40] (adipose
tissue) and CD341KDR1CD1331 [111] (circulating EPCs). Using
rat adipose tissue, Zhou and colleagues isolated and cultured
EPCs that were characterized as CD341Stro-11 VEGFR-21
eNOS1CD311a-SMA-CD142CD452. These EPCs formed
capillary-like structures in static Matrigel and acellular biological
scaffold and secreted VEGF, supporting an angiogenic role for EPCs
[112]. Hager and colleagues combined CD31, CD144, VEGF-R2,
CD146, CD73, and CD105 to isolate rare human EPCs that could dif-
ferentiate into endothelial cells in vitro [113]. Perhaps more impor-
tantly, it is known that in vitro cultures of blood yield two distinct
subpopulations of EPCs: early EPCs (eEPCs) and outgrowth endo-
thelial cells (OECs) [114]. In a comparative study using transcrip-
tomic, proteomic and structural analysis, eEPCs were shown to
closely resemble monocytes, while OEC expression correlated with
endothelial cells [115]. This finding is significant because eEPCs
were shown to express genes involved in inflammation and
immune responses [115], potentially eliciting or exacerbating
strong inflammatory responses. Moreover, these findings might
explain the high rates of immune rejection seen with allogeneic
EPC transplants [108, 109]. Interestingly, culture dishes containing
the same media can be used to isolate these cells by modifying its
coating agent; fibronectin will select for eEPCs, while collagen will
isolate OECs [116]. Therefore, defining the composition and
phenotype of the EPCs in the SVF is necessary to reveal its full
potential.

Hematopoietic Stem Cells

By definition, a HSC is a cell isolated from the blood or bone mar-
row that can renew itself and differentiate to a variety of special-
ized cells within the hematopoietic lineage [117]. HSC
transplantation has been used to treat a variety of blood-related
conditions, including destruction of cancerous hematopoietic cells,
inherited anemia, and, most recently, autoimmune diseases [117,
118]. Classically, the bone marrow, umbilical cord, or peripheral
blood collection after stimulation with granulocyte colony stimu-
lating factor (G-CSF) have been the tissue sources for HSC trans-
plants. But, the presence of HSCs suggests the SVF could provide a
reliable cell source in human leukocyte antigen (HLA)-matched
HSC transplants. Once again, caution is required before adipose-

derived HSCs are considered for clinical applications. Animal stud-
ies strongly suggest the existence of two distinct HSC populations
within the hematopoietic niche: a long-term and a short-term
HSC. Long-term HSCs are capable of self-renewal throughout the
lifespan of an organism, while short term HSC, at least in rodents,
may only restore hematopoiesis for a few months [119]. Unfortu-
nately, there are no definitive assays capable of identifying long
term HSCs. Advanced methods for isolating mouse long-term
HSCs combine the use of Rhodamine-123 (Rho) and/or Hoechst
33342 efflux measurements, or antibody combinations against
CD48, CD150 and Lin2Sca11Kit1CD342Flt32 (reviewed else-
where [117]). Human long term HSCs have been isolated using
Thy11RholoCD49f1 [120]. Still, the gold standard in identifying
the phenotype of HSCs is transplantation and reconstitution of
the bone marrow HSC population in rodents following irradiation
[121]. In this regard, Han and colleagues (2010) have demon-
strated the existence of HSCs in the SVF of rodents in the fre-
quency of 0.004%6 0.001% using Lin-Sca-11c-kit1 and confirmed
the long-term multilineage reconstitution ability of the SVF after
transplant [122]. Colony-forming cell assays using the SVF from
recipient mice revealed that all SVF-HSCs originated from the
bone marrow. Further, HSC mobilization using G-CSF increased
the number of functional HSC in the SVF [122]. These results sup-
port the use of SVF as an alternative source of HSCs. It is likely
that the longevity and phenotype of HSCs in human SVF could be
elucidated using similar phenotypic profiles and/or animal
models.

Intriguingly, there are reports of HSC plasticity toward nonhe-
matopoietic cells. Using lethally irradiated female FAH(2/2)
mouse, an animal model of tyrosinemia type I, Lagasse and col-
leagues showed that transplantation of as few as 50 male HSCs
led to abundant growth of donor-derived liver cells in recipient
female mice [123]. Recently, Krause and colleagues identified epi-
thelial cells derived from donor HSCs in the lungs, gut and skin of
recipient mice [124]. Human studies have demonstrated male
liver cells in female patients who have received bone marrow
grafts from male donors and vice versa, suggesting that some
bone marrow-derived cells have the capacity to integrate into the
liver and form hepatocytes [125].While these findings are of inter-
est, additional studies are required to define the differentiation
capacity of HSCs under various physiological and pathological
conditions.

Immune Cells

It is known that the SVF contains monocytes and macrophages. It
is estimated that the monocyte/macrophage compartment consti-
tutes approximately 10% of the SVF, based on CD14 expression
[126]. Macrophages found in the SVF express phenotypical
markers of M2 macrophages (CD163 and integrin avb5) and
secrete IL-10 and IL-1 receptor antagonist [127]. This M2 pheno-
type opposes their immune counterpart M1 macrophages, which
have been historically understood to mediate inflammatory
responses [128]. M2 macrophages are thought to exert anti-
inflammatory functions and therefore offer a novel therapeutic
opportunity. Animal models indicate modulating macrophages
toward an M2 phenotype can inhibit the recruitment of inflamma-
tory cells and is associated with significant protection against ath-
erosclerosis [129, 130]. A recent clinical trial showed that stroke
patients who received autologous M2 macrophages significantly
improved their neurological recovery, in part through the immu-
nomodulatory activity of M2 macrophages [131]. However, the
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phenotype of macrophages needs further characterization. Stud-
ies indicate monocytes/macrophages present in the adipose tissue
are significantly affected by obesity. It is known that obesity indu-
ces an accumulation of macrophages in the adipose SVF. These
accumulated macrophages appear to be of M1 phenotype and
closely associate with chronic inflammation in part by producing
pro-inflammatory molecules [132]. In fact, a recent study showed
that adipose-derived macrophages isolated from obese patients
had a skewed monocyte/macrophage phenotype ratio, with
higher number of macrophages expressing M1 markers when
compared to nonobese patients [133]. Interestingly, postbariatric
surgery patients displayed reduced M1 accumulation when com-
pared to presurgery levels, supporting the notion that the inflam-
matory environment is driven by adipose accumulation.
Therefore, the macrophage composition of individual patient SVF
and its influence on modulating inflammation must be taken into
consideration [133].

Regulatory T-cells (Tregs) are an immunosuppressive subpopu-
lation of T-cells that inhibit the induction and proliferation of
effector T-cells, thereby modulating autoimmunity, allergic
responses, inflammation and responses to infections and tumors
[134]. Tregs comprise approximately 5%–20% of the CD41 T-cell
compartment, but their numbers in the adipose tissue are still
unknown. Studies in rodents indicate key differences between vis-
ceral adipose tissue-resident Treg cells, also known as “Fat Tregs”
and lymphoid-derived Tregs. Fat Tregs account for a much larger
fraction of CD41 T cells (50%–70%) [135]. In addition, Fat Tregs
differentially express many genes in comparison to lymphoid-
derived Tregs. While Fat Tregs maintain approximately 60% of the
canonical Treg signature, they differentially express genes that are
mainly associated with lymphocyte migration, extravasation and
lipid metabolism [135]. Interestingly, Tregs in adipose tissue
express a much higher level of IL-10 (136-fold augmentation of
IL-10 transcripts) in comparison with lymph node Tregs [136],
supporting a higher anti-inflammatory potential for adipose-
derived Tregs. Notably, the negative effects of obesity are also
observed in these cells. Fat Tregs are abundant in visceral adi-
pose tissue of lean mice, but their number is greatly reduced in
insulin-resistant animal models of obesity [136, 137]. Taken
together, the utilization of anti-inflammatory, immunomodulatory
cells from the adipose tissue, although promising requires addi-
tional considerations.

Pericytes

Blood vessels throughout the body are formed by two interacting
cell types: endothelial cells and perivascular cells. Pericyte recruit-
ment is essential for the maturation of the developing vascula-
ture. Following primary capillary plexus formation, a functional
vessel network is formed by extensive pruning and sprouting of
vessels. Once newly formed sprouts cease proliferation, they
secrete growth factors such as PDGF-B that attract pericytes to
envelop vessels in the brain, kidney, heart, lung and adipose tissue
[138]. Pericytes, like smooth muscle cells, function on large diame-
ter vessels, and regulate blood flow by modulating vasoconstric-
tion and vasodilation [139]. Interestingly, pericytes perform
specific functions in different organs. The highest density of peri-
cytes in the body is found in vessels of the central nervous system,
where endothelial cells are covered with pericytes in a 1:1 to 3:1
ratio to form and protect the blood-brain barrier [139–141].
Although the density of pericytes in adipose tissue is not known,
endothelial-to-pericyte ratios in normal tissues vary between 1:1

and 10:1. Pericyte coverage of the endothelial abluminal surface
within adipose tissue ranges between 70% and 10% [142]. Inter-
estingly, brain pericytes may constitute a microglia precursor with
phagocytic activity [143]. In the liver, they are called hepatic stel-
late cells and are known to regulate extracellular matrix remodel-
ing, vitamin A metabolism (containing more than 80% of the total
vitamin A in the body) [144] and inflammatory cell recruitment
resulting from liver diseases [145]. Kidney pericytes are critical for
the increased capillary surface area caused by branching of a sin-
gle invading vascular loop into the glomerular capillaries [146].
Due to tissue specificity and functional heterogeneity, there is no
known single pericyte-specific marker. Proposed markers include a
combination of CD1461CD34-CD45-CD562, CD13, platelet derived
growth factor receptor-b (PDGFR-b), epidermal growth factor
receptor (EGFR), adenosine A2 receptors, a-smooth muscle actin,
desmin, NG2 proteoglycan, aminopeptidase A, aminopeptidase N
and regulator of G-protein signaling 5 (RGS5) [147].

Due to its vascular supporting role, pericytes have been con-
sidered for the treatment of diseases with a vascular component.
A recent study showed transplantation of pericytes improved
heart function, as measured by attenuated ventricular dilatation
and improved contractility, reduced fibrosis, and diminished
inflammation in an ischemic heart disease model [148]. However,
very little donor engraftment was detected and therapeutic
improvements were attributed to unknown paracrine factors and
cellular interactions. Moreover, Katare and colleagues demon-
strated saphenous vein-derived pericyte progenitor cells (SVPs)
could improve heart function in a mouse myocardial infarction
model through a concert of growth factors and chemokines [149].
Interestingly, SVPs transfected with siRNA against miR-132 exhib-
ited reduced efficacy following myocardial infarct, indicating a crit-
ical therapeutic role for miR-132 [149]. Studies have shown that
adipose-derived pericytes (CD1461, CD452, CD342, CD312)
have significant bone regeneration potential in an atrophic, non-
union model [150]. Another study used CD1461/CD342/
CD452/CD562 pericytes and demonstrated increased lifespan in
a mouse model of Duchenne muscular dystrophy [151]. Signifi-
cantly, both studies showed no signs of differentiation. As one
might expect, stress conditions significantly affect pericyte sur-
vival. Loss of pericytes is an early hallmark of diabetic retinopathy
and leads to microaneurysm due to reduced vessel integrity [152].
Inducing inflammation with lipopolysaccharide treatment leads to
pericyte loss and microvascular dysfunction in a mouse model of
sepsis [153]. Furthermore, loss of pericytes accelerates Ab accu-
mulation, the appearance of Tau pathology and neuronal degener-
ation in mice overexpressing Ab-precursor protein [154]. Given
the critical role for pericytes in vascular structure and function,
future studies could reveal a therapeutic role for pericytes in
health and disease.

CONCLUSION

Given its abundance and mixture of potentially therapeutic cells,
the treatment of various diseases and conditions with SVF-
derived cell therapies holds great clinical promise. Along with the
combined efforts from IFATS and ISCTs, scientist and clinicians
should further emphasize the difference between cells from the
SVF of the adipose tissue and the adipose tissue-derived stem
cells, the ASCs. Such difference may not only dictate different
therapeutic rationales given the ever-expanding therapeutic
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properties of ASCs and the different cell components within the
SVF, but also directly impacts therapy regulations, particularly in
countries where the use of SVF could be placed under a less
stringent regulation than ASCs or MSCs due to its autologous,
point-of-care use. There is a great need to accelerate the knowl-
edge of scientists and clinicians on SVF, specifically with respect
to its composition, nomenclature and necessary studies. Many
basic scientific questions remain to be addressed. Although the
mechanisms through which SVF regenerates tissue remains
inconclusive, the literature supports the contribution of paracrine
effects, with crosstalk between SVF components and host leading
to repair and healing. In this paradigm, differentiation may play a
minor role. Future studies are needed to elucidate the mecha-
nism(s) of action of SVF and their differentiation potential in vivo.
The heterogeneity for different ASC and MSC preparations has

been extensively discussed, including the work of Baer and col-
leagues highlighting ASC donor variability in forty-nine cellular
surface markers in a comprehensive phenotyping study [155],
and the work of Siegel and colleagues characterizing surface
markers, proliferation capacity, and in vitro function from 53 dif-
ferent MSC preparations [156]. Further research needs to investi-
gate donor variability in SVF preparations. Are there intrinsic
differences in composition of SVF between donors? Studies that
highlighted differences in specific subpopulations, like the inflam-
matory effects of obesity on macrophages [133] need to be
expanded to other subpopulations in the SVF in order to under-
stand how SVF composition differs in healthy versus disease
states. These questions are particularly important to not only
understand SVF biology, but to also reliably predict the therapeu-
tic efficacy of SVF. Likewise, determining optimal dose/infusion

Figure 1. Cellular subsets within the SVF. Abbreviations: HSC, hematopoietic stem cell; SVF, stromal vascular fraction.
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schedules and the development of potency assays will help opti-
mize the therapeutic potential of SVF. Encouraging studies men-
tioned here describing the isolation and characterization of SVF-
derived HSCs, EPCs and pericytes attest to significant therapeutic
promise. Hence, are we underestimating the therapeutic poten-
tial of SVF? Can the SVF be used as an alternative source of endo-
thelial precursors, HSCs, M2 macrophages, regulatory T cells and
pericytes? Classically, these cells have been found in the bone
marrow or blood in low frequencies, limiting their clinical utility.
Using the SVF as an abundant source for such therapeutic cells
could have profound effects for a myriad of conditions and dis-
eases (Fig. 1). Finally, adverse effects from SVF treatments
offered in private, unregulated clinics often go unreported or are
sometimes only found in the news. Results from completed
phase 1 clinical trials (Table 1) indicate SVF treatment for osteoar-
thritis, SLE and fat graft—in which SVF is locally injected; indicate
a safe profile, with no short time neoplasma, unwanted tissue dif-
ferentiation or adverse effects. Given the autologous, noncul-
tured nature proposed for SVF therapies, tracking SVF cells
following infusion poses a significant challenge. Using a protocol
for labeling SVF cells with CS-1000, a perfluorocarbon and 19F-
rich agent, Rose and colleagues attempted to solve this problem
by developing a labeling clinical protocol at the point-of-care
[157]. However, the procedure required the use of red blood

cell (RBC) lysis step and only 37% of the total SVF was labeled,
with preferentially labeling of CD341 cells over CD451 cells.
Current and future studies will elucidate the principal risks asso-
ciated with SVF-based therapies, including where SVF-derived
cells migrate and reside.
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